Using In situ Dynamic Cultures to Rapidly Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for Antibacterial Wound Dressings

نویسندگان

  • Peng Zhang
  • Lin Chen
  • Qingsong Zhang
  • Feng F. Hong
چکیده

Bacterial nano-cellulose (BNC) is considered to possess incredible potential in biomedical applications due to its innate unrivaled nano-fibrillar structure and versatile properties. However, its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS)/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25-0.75% (w/v) during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 to 5 days as compared to the conventional static cultures. Although, its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of antimicrobial chitosan based nanofiber dressings for wound healing applications

Objective(s): Chitosan based composite fine fibers were successfully produced via a centrifugal spinning technology. This study evaluates the ability of the composites to function as scaffolds for cell growth while maintaining an antibacterial activity. Materials and methods: Two sets of chitosan fiber composites were prepared, one filled with anti-microbial silver nanoparticles and another on...

متن کامل

Semi-IPN Films and Electrospun Nanofibers Based On Chitosan/PVA as an Antibacterial Wound Dressing

The antimicrobial activity of a wound dressing is a key factor for preventing and treating wound infection. The current study evaluated the physiochemical properties and antimicrobial activities of semi-IPNs (interpenetrating polymer networks) based on chitosan/polyvinyl alcohol (PVA) films and nanofibers as candidates for wound dressings and investigated the effects of morphologies (nanofibrou...

متن کامل

Semi-IPN Films and Electrospun Nanofibers Based On Chitosan/PVA as an Antibacterial Wound Dressing

The antimicrobial activity of a wound dressing is a key factor for preventing and treating wound infection. The current study evaluated the physiochemical properties and antimicrobial activities of semi-IPNs (interpenetrating polymer networks) based on chitosan/polyvinyl alcohol (PVA) films and nanofibers as candidates for wound dressings and investigated the effects of morphologies (nanofibrou...

متن کامل

بررسی اثرات پانسمانهای نانوفیبری حاوی کیتوزان در ترمیم زخم در مدل موش سوری

Background & Aims: Wound healing and tissue regeneration are big challenges in medicine. The type of wound dressing has great impact on wound treatment and prevention of superficial infection and scar formation. Wound dressings containing growth factor, antibiotic, antiseptic and antioxidant have great influence in reducing wound scar and accelerating wound healing procedure. Electrospinning is...

متن کامل

Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility.

Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in microbiology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016